If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t-0.48t^2=0
a = -0.48; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-0.48)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-0.48}=\frac{-8}{-0.96} =8+0.32/0.96 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-0.48}=\frac{0}{-0.96} =0 $
| 5x+4-1=33 | | 4.8d=4.4 | | 6-2/9m=-8 | | 33/5=-15t | | 4.8d=4.2 | | -4t+0,48t^2+25=0 | | 4–3(m+1)=(-38) | | 77688+25896x=31068x | | 5^x=121 | | 16x^2-24x-16=0 | | ?x7=56 | | 4y=y21 | | 3x-x=390 | | -(x-1.5)^2+7.25=0 | | 2/3m+1/2=-1/5 | | 9(4-s)=10 | | 9x-11=2x+6-5x-9 | | 6(2x-4)+5x=129 | | 7(7x-10)=175 | | 77688+2158x=2589x | | 6x-44+4x=56 | | 24-b/28=-14 | | 3x+16=10x-28=8x+3 | | 3x+16=10x-28 | | 5s-9=6 | | 10(4x-9)=30x+20 | | -5k=16-4.5 | | 2(5x+3)=4x-36 | | 0=4x^2+x-105 | | 3y=5+-2y | | 4x-1/2x=5/x | | 10a^2=40 |